

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ## Changelog

5.5.7
- Added support for Staging environment Google analytics codes
- Modifying Jekyll data files to work with the netlifycms correctly (data must be stored within an object in data files i.e items:)
- Favicon path needs to be specified in the _data/settings.yml file (removing asset_path use slowly)
- Removed the error-pages section of the _data/settings.yml file
- Updated the flow_inner.html jekyll include to use the same naming convention as the custom_include_row
- Added a tags.yml data file to be used in a relation widget in conjuction with site posts (netlifycms change)

5.5.4
- flow row layout added

	allows users to create complex pages using just frontmatter (no longer custom html - works well with Jekyll content management systems)

	added youtube video embed support to feature blocks.

4.7.0
- Refactored the blog section of the theme

	Removed excessive liquid used in the includes/layouts

	Refactored the _sass/core/blog.scss file - now entirely SASS

4.6.0
- Updated the footer design
- Refactored the footer css into SASS

4.1.2
- Added the jekyll-last-modified-at plugin
- Added disqus comments config object

3.9.6
Added the jumbotron slider functionality so that jumbotron headers can now feature a fullwidth customisable owl carousel

3.9.1
- Added the avatar_placeholder setting in the blog section of the settings.yml file
- Added ASCII art optional feature (ascii-art: ascii-art.html) in the settings.yml file.
- Removed old Jekyll _includes
- Added doubleScroll JQuery plugin
- Added the featherlight jQuery lightbox plugin

3.8.0
- Updated the image.html include to use the featherlight plugin for image lightboxes
- Added the featherlight/doubleScroll jQuery plugins to the JS packages
- Added title to the Linaro 404 SVG

 # Jumbo Jekyll Theme

This is an open source Jekyll theme built for use on the Linaro Jekyll static websites. This project aims to unify the styles and components of Linaro static websites and make it easier to replicate and deploy a new static site.

Documentation

Documentation for the theme now lives under the [GitHub Wiki](https://github.com/linaro-marketing/jumbo-jekyll-theme/wiki).

Contributions

Contributions to the theme are welcome as there is always room for improvement! Please submit a PR with your features/improvements/fixes.

 —
name: John Smith
username: john.smith
—

 —
name: Kyle Kirkby
username: kyle
twitter: https://twitter.com
github: https://github.com/kylekirkby
linkedin: https://www.linkedin.com/in/kylekirkby/
youtube: https://youtube.com
image: /assets/images/test/kyle.jpg
—
“Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?”

 —
permalink: /404.html
title: 404 page not found!
description: >

404 page not found

	flow:
	
	row: main_content_row

—
{% include components/linaro_404.html %}

 —
title: About
layout: flow
permalink: /about/
descrtion: >

This page showcases the power of the flow.html Jekyll include provided in this theme.

keywords: flow, jekyll, automation, simple, bootstrap 3
flow:

	row: container_row
style: block_row
sections:

	format: title
title_content:

size: h2
text: Features

	format: block
style: #
block_section_content:

	blocks:
	
	title: Jekyll 4
url: https://github.com/jekyll/jekyll/releases/tag/v4.0.0
image: /assets/images/test/jekyll-logo.png
description: >

We’re using the latest stable version of Jekyll - Jekyll 4! This enables faster site builds.

	buttons:
	
	title: View Release
url: https://github.com/jekyll/jekyll/releases/tag/v4.0.0
icon: icon-github
style: btn-primary

	title: Bootstrap 4
url: /about/
image: /assets/images/test/bootstrap-social-logo.png
description: >

Bootstrap 4 is the latest version of the world’s most popular front-end framework.

	buttons:
	
	title: View Framework
url: https://getbootstrap.com/docs/4.4/getting-started/introduction/
icon: icon-external
style: btn-primary

	title: Sass
url: /about/
image: /assets/images/test/sass-logo.png
description: “>Sass is the most mature, stable, and powerful professional grade CSS extension language in the world.”

	buttons:
	
	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Pagespeed 100
url: /about/
image: /assets/images/test/google-pagespeed.png
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	row: main_content_row

—
This is a main content row.

 —
title: Blog
permalink: /blog/
description: >

Welcome to the example blog.

	flow:
	
	row: container_row
sections:

	format: custom_include
source: blog/post_search.html
payload:

name: url
data: /assets/json/posts.json

category: News

	format: custom_include
source: blog/display_latest_posts.html
category: News

—

 —
title: Cookies Policy
permalink: /cookies/
description: >

An example privacy policy page.

	jumbotron:
	title: Privacy
description: >

View our privacy policies.

	flow:
	
	row: container_row
sections:

	format: custom_include
source: components/cookie_manager.html

	row: main_content_row

—
This page contains cookies policies and the cookie manager.

 —
title: Get your flow on!
layout: flow
permalink: /flow/
descrtion: >

This page showcases the power of the flow.html Jekyll include provided in this theme.

keywords: flow, jekyll, automation, simple, bootstrap 3
jumbotron:

inner_class: dotted
title: Get your flow on!
description: >

The flow layout enables you to create custom pages using only Jekyll front matter.

image: /assets/images/test/background-image1.jpg
buttons:

	title: View on Github
icon: icon-github
class: test
url: https://github.com

	flow:
	
	row: container_row

	# style: dark
	
	sections:
	
	format: title
style: #
title_content:

size: h2
text: What is the flow layout?
style: display-4

	format: text
style: #
text_content:

	text: |
	The flow layout enables content editors to create custom pages _without_ the need to add a new layout.

The layout let’s content editors a combination of row and section types to create a custom static page.

	format: buttons
style: #
buttons_content:

	title: More Details
url: /about/
icon: fa fa-arrow-right
style: btn-primary

	row: container_row
style: fixed text-center
background_image: /assets/images/test/background-image1.jpg
sections:

	format: title
title_content:

size: h2
text: Container row with background image

	format: text
style: text-center text-white
text_content:

text: A container row featuring a background image

	format: buttons
style: text-center
buttons_content:

	title: More Details
url: /about/
icon: fa fa-arrow-right
style: btn-primary

	row: container_row
style: bg-primary
sections:

	format: title
style: text-center text-white
title_content:

size: h2
text: Lazy YouTube embed row

	format: youtube
style: #
url: https://www.youtube.com/watch?v=mWpK-cNQmL8

	# poster_image: /assets/images/test/background-image1.jpg
	title: Interview with Shuah Khan on Kernel Self Test

	row: container_row
style: block_row
sections:

	format: title
style: text-center
title_content:

size: h2
text: Collapse Section

	format: collapse
style: #
panels:

	title: Test Panel Title
content: |

Test Panel Content

Some other text

	Bullet 1

	Bullet 2

	Bullet 3

	title: Test Panel Title 2
content: |

Test Panel Content 2

Some other text

	Bullet 1

	Bullet 2

	Bullet 3

	row: container_row
style: block_row

	# background_image: /assets/images/test/background-image1.jpg
	
	sections:
	
	format: title
style: text-center
title_content:

size: h2
text: Block Row

	format: block
style: text-center
block_section_content:

item_width: “4”
blocks:

	title: Block 1
url: /about/
modal_content: |

This is some modal _content_.

image: /assets/images/test/background-image1.jpg
background_image: true
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: More
url: /flow/
icon: fa fa-arrow-right
style: btn-secondary

	title: Block 2
url: /about/
image: /assets/images/test/js-logo.png
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Block 3
url: /about/
image: /assets/images/test/js-logo.png
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	row: container_row
style: block_row fixed
background_image: /assets/images/test/background-image1.jpg
sections:

	format: block
style: text-center text-white
block_section_content:

item_width: “3”
blocks:

	title: Block 1
url: /about/
image: /assets/images/test/background-image1.jpg
background_image: true
style: d-flex
content_style: d-flex flex-column align-items-center justify-content-center
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
style: btn-primary
icon: fa fa-arrow-right

	title: Block 2
url: /about/
image: /assets/images/test/background-image1.jpg
background_image: true
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Block 3
url: /about/
style: block_three_style
image: /assets/images/test/background-image1.jpg
background_image: true
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Block 4
url: /about/
image: /assets/images/test/background-image1.jpg
background_image: true
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Read
url: /flow/
icon: fa fa-book
style: btn-primary

	row: container_row
style: block_row fixed
sections:

	format: tabs
style: #
tabs:

	title: Test
content: |

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

> Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis > nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore > eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

	Test

	Test

	Test

This is some more [content](/).

	title: Test 2
content: |

This is some test tab content. 2

	Test

	Test

	Test

This is some more [content](/).

	title: Test 3
content: |

This is some test tab content. 3

	Test

	Test

	Test

This is some more [content](/). 3

	row: container_row
#style: fixed
background_image: /assets/images/test/background-image1.jpg
sections:

	format: title
title_content:

size: h2
text: Custom Include Section

	format: custom_include
source: examples/custom_include.html

	row: full_width_row
style: fixed block_row
sections:

	format: title
style: text-center
title_content:

text: Full Width Block Row
size: h2

	format: block
style: text-center
item_width: 3
block_section_content:

	blocks:
	
	title: Members Section Example
url: /about/
image: /assets/images/test/background-image1.jpg
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Members Section Example
url: /about/
image: /assets/images/test/background-image1.jpg
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Members Section Example
url: /about/
image: /assets/images/test/background-image1.jpg
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Members Section Example
url: /about/
image: /assets/images/test/background-image1.jpg
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Read
url: /flow/
icon: fa fa-book
style: btn-primary

	row: full_width_row
#style: new
sections:

	format: title
title_content:

text: Feature Block Row (Full Width)
size: h2

	format: feature_block
style: dotted
feature_block_content:

position: “left”
type: “youtube_video”
youtube:

url: https://www.youtube.com/watch?v=QH2-TGUlwu4
poster_image: /assets/images/test/background-image1.jpg

title: Feature Block
text: >

A feature block with a youtube video.

	buttons:
	
	title: Button 1
url: /about/
style: btn-primary

	title: Button 2
url: /about/
style: btn-primary

	format: feature_block

	# style: text-center text-white
	
	feature_block_content:
	position: “right”
type: “image”
image_content_path: /assets/images/test/background-image1.jpg
title: Feature Block
text: >

A feature block with an image.

	buttons:
	
	title: Button 1
url: /about/
style: btn-primary

	title: Button 2
url: /about/
style: btn-primary

	row: container_row
#style: new
sections:

	format: title
title_content:

text: Feature Block Row
size: h2

	format: feature_block
style: dotted
feature_block_content:

position: “left”
type: “slider”
slider_content:

lightbox_enabled: true
seconds_per_slide: 5
nav: true
dots: false
xs_items: 1
sm_items: 1
md_items: 1
lg_items: 1
items:

	image: /assets/images/test/background-image1.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image2.png
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image3.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image1.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image2.png
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image3.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image1.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image2.png
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image3.jpg
alt: Background Image
title: Background Image 1

title: Feature Block
text: >

A feature block with an owl carousel slider.

	buttons:
	
	title: Button 1
url: /about/
style: btn-primary

	title: Button 2
url: /about/
style: btn-primary

	format: feature_block

	# style: text-center text-white
	
	feature_block_content:
	position: “right”
type: “image”
image_content_path: /assets/images/test/background-image1.jpg
title: Feature Block
text: >

A feature block with an image.

	buttons:
	
	title: Button 1
url: /about/
style: btn-primary

	title: Button 2
url: /about/
style: btn-primary

	format: feature_block

	# style: text-center text-white
	
	feature_block_content:
	position: “left”
type: “youtube_video”
youtube:

url: https://www.youtube.com/watch?v=QH2-TGUlwu4
poster_image: /assets/images/test/background-image1.jpg

title: Feature Block (with youtube video)
text: >

This is a feature block using a youtube video for the featured content.

	buttons:
	
	title: Button 1
url: /about/
style: btn-primary

	title: Button 2
url: /about/
style: btn-primary

	row: container_row
#style: new
sections:

	format: title
title_content:

text: Slider Row Example
size: h2

	format: slider
style: customCSS
slider_content:

lightbox_enabled: true
seconds_per_slide: 5
nav: true
dots: false
xs_items: 1
sm_items: 2
md_items: 4
lg_items: 6
items:

	image: /assets/images/test/background-image1.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image2.png
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image3.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image1.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image2.png
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image3.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image1.jpg
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image2.png
alt: Background Image
title: Background Image 1

	image: /assets/images/test/background-image3.jpg
alt: Background Image
title: Background Image 1

	row: full_width_row
#style: new
sections:

	format: title
title_content:

text: Slider Row Example (Full Width)
size: h2

	format: text
style: text-center
text_content:

text: Some block of text to describe something about such and such…

	format: slider
style: customCSS
slider_content:

lightbox_enabled: true
seconds_per_slide: 5
nav: true
dots: false
xs_items: 1
sm_items: 3
md_items: 6
lg_items: 9

	row: custom_include_row
source: examples/custom_include_row.html

—

 —
title: Privacy
permalink: /privacy/
description: >

An example privacy policy page.

	jumbotron:
	title: Privacy
description: >

View our privacy policies.

	flow:
	
	row: main_content_row

—
This page contains your companies privacy policies.

 —
title: Video header
layout: flow
permalink: /features/video-header/
descrtion: >

This page showcases the video header

keywords: flow, jekyll, automation, simple, bootstrap 3
jumbotron:

title: Bringing the Arm ecosystem together
description: “Test description”
video:

	source:
	mp4: https://static.linaro.org/connect/assets/videos/san19_promo_banner.mp4
ogv: https://static.linaro.org/connect/assets/videos/san19_promo_banner.ogv
webm: https://static.linaro.org/connect/assets/videos/san19_promo_banner.webm

poster: /assets/images/test/background-image1.jpg

	flow:
	
	row: container_row
style: block_row
sections:

	format: title
title_content:

size: h2
text: Features

	format: block
style: #
block_section_content:

	blocks:
	
	title: Jekyll 4
url: https://github.com/jekyll/jekyll/releases/tag/v4.0.0
image: /assets/images/test/jekyll-logo.png
description: >

We’re using the latest stable version of Jekyll - Jekyll 4! This enables faster site builds.

	buttons:
	
	title: View Release
url: https://github.com/jekyll/jekyll/releases/tag/v4.0.0
icon: icon-github
style: btn-primary

	title: Bootstrap 4
url: /about/
image: /assets/images/test/bootstrap-social-logo.png
description: >

Bootstrap 4 is the latest version of the world’s most popular front-end framework.

	buttons:
	
	title: View Framework
url: https://getbootstrap.com/docs/4.4/getting-started/introduction/
icon: icon-external
style: btn-primary

	title: Sass
url: /about/
image: /assets/images/test/sass-logo.png
description: “>Sass is the most mature, stable, and powerful professional grade CSS extension language in the world.”

	buttons:
	
	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	title: Pagespeed 100
url: /about/
image: /assets/images/test/google-pagespeed.png
description: See our photos from event.
buttons:

	title: More Details
url: /flow/
icon: fa fa-arrow-right
style: btn-primary

	row: main_content_row

—
This is a main content row.

 —
title: Writing a Blog Post
date: 2020-03-02 12:00:00
description: >-

This blog post will give you an overview of how to get started with the jumbo-jekyll-theme

author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—

{% include image.html path=”/assets/images/test/background-image1.jpg” class=”test” alt=”” %}
{% include image.html path=”/assets/images/test/background-image1.jpg” class=”” %}

This file is https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet plus a few fixes and additions. Used by [obedm503/bootmark](https://github.com/obedm503/bootmark) to [demonstrate](https://obedm503.github.io/bootmark/docs/markdown-cheatsheet.html) it’s styling features.

{% include image.html path=”/assets/images/test/background-image1.jpg” class=”medium-inline right” %}

This is intended as a quick reference and showcase. For more complete info, see [John Gruber’s original spec](http://daringfireball.net/projects/markdown/) and the [Github-flavored Markdown info page](http://github.github.com/github-flavored-markdown/).

Note that there is also a [Cheatsheet specific to Markdown Here](./Markdown-Here-Cheatsheet) if that’s what you’re looking for. You can also check out [more Markdown tools](./Other-Markdown-Tools).

Table of Contents
[Headers](#headers)
[Emphasis](#emphasis)
[Lists](#lists)
[Links](#links)
[Images](#images)
[Code and Syntax Highlighting](#code)
[Tables](#tables)
[Blockquotes](#blockquotes)
[Inline HTML](#html)
[Horizontal Rule](#hr)
[Line Breaks](#lines)
[YouTube Videos](#videos)

Headers

```
# H1
## H2
### H3
#### H4
##### H5
###### H6

Alternatively, for H1 and H2, an underline-ish style:


Alt-H1


Alt-H2

```

H1
H2
H3
H4
H5
H6

Alternatively, for H1 and H2, an underline-ish style:

Alt-H1

Alt-H2

Emphasis

```
Emphasis, aka italics, with asterisks or _underscores_.

Strong emphasis, aka bold, with asterisks or __underscores__.

Combined emphasis with asterisks and _underscores_.

Strikethrough uses two tildes. ~~Scratch this.~~
```

Emphasis, aka italics, with asterisks or _underscores_.

Strong emphasis, aka bold, with asterisks or __underscores__.

Combined emphasis with asterisks and _underscores_.

Strikethrough uses two tildes. ~~Scratch this.~~

Lists

(In this example, leading and trailing spaces are shown with with dots: ⋅)

```
1. First ordered list item
2. Another item
⋅⋅* Unordered sub-list.
1. Actual numbers don’t matter, just that it’s a number
⋅⋅1. Ordered sub-list
4. And another item.

⋅⋅⋅You can have properly indented paragraphs within list items. Notice the blank line above, and the leading spaces (at least one, but we’ll use three here to also align the raw Markdown).

⋅⋅⋅To have a line break without a paragraph, you will need to use two trailing spaces.⋅⋅
⋅⋅⋅Note that this line is separate, but within the same paragraph.⋅⋅
⋅⋅⋅(This is contrary to the typical GFM line break behaviour, where trailing spaces are not required.)


	Unordered list can use asterisks





	Or minuses





	Or pluses




```


	First ordered list item

	Another item

	Unordered sub-list.

	Actual numbers don’t matter, just that it’s a number

	Ordered sub-list

	And another item.

You can have properly indented paragraphs within list items. Notice the blank line above, and the leading spaces (at least one, but we’ll use three here to also align the raw Markdown).

To have a line break without a paragraph, you will need to use two trailing spaces.
Note that this line is separate, but within the same paragraph.
(This is contrary to the typical GFM line break behaviour, where trailing spaces are not required.)

	Unordered list can use asterisks

	Or minuses

	Or pluses

Links

There are two ways to create links.

```
[I’m an inline-style link](https://www.google.com)

[I’m an inline-style link with title](https://www.google.com “Google’s Homepage”)

[I’m a reference-style link][Arbitrary case-insensitive reference text]

[I’m a relative reference to a repository file](../blob/master/LICENSE)

[You can use numbers for reference-style link definitions][1]

Or leave it empty and use the [link text itself].

URLs and URLs in angle brackets will automatically get turned into links.
http://www.example.com or <http://www.example.com> and sometimes
example.com (but not on Github, for example).

Some text to show that the reference links can follow later.

[arbitrary case-insensitive reference text]: https://www.mozilla.org
[1]: http://slashdot.org
[link text itself]: http://www.reddit.com
```

[I’m an inline-style link](https://www.google.com)

[I’m an inline-style link with title](https://www.google.com “Google’s Homepage”)

[I’m a reference-style link][Arbitrary case-insensitive reference text]

[I’m a relative reference to a repository file](../blob/master/LICENSE)

[You can use numbers for reference-style link definitions][1]

Or leave it empty and use the [link text itself].

URLs and URLs in angle brackets will automatically get turned into links.
http://www.example.com or <http://www.example.com> and sometimes
example.com (but not on Github, for example).

Some text to show that the reference links can follow later.

[arbitrary case-insensitive reference text]: https://www.mozilla.org
[1]: http://slashdot.org
[link text itself]: http://www.reddit.com

Images

```
Here’s our logo (hover to see the title text):

Inline-style:
![alt text](https://github.com/adam-p/markdown-here/raw/master/src/common/images/icon48.png “Logo Title Text 1”)

Reference-style:
![alt text][logo]

[logo]: https://github.com/adam-p/markdown-here/raw/master/src/common/images/icon48.png “Logo Title Text 2”
```

Here’s our logo (hover to see the title text):

Inline-style:
![alt text](https://github.com/adam-p/markdown-here/raw/master/src/common/images/icon48.png “Logo Title Text 1”)

Reference-style:
![alt text][logo]

[logo]: https://github.com/adam-p/markdown-here/raw/master/src/common/images/icon48.png “Logo Title Text 2”

Code and Syntax Highlighting

Code blocks are part of the Markdown spec, but syntax highlighting isn’t. However, many renderers – like Github’s and Markdown Here – support syntax highlighting. Which languages are supported and how those language names should be written will vary from renderer to renderer. Markdown Here supports highlighting for dozens of languages (and not-really-languages, like diffs and HTTP headers); to see the complete list, and how to write the language names, see the [highlight.js demo page](http://softwaremaniacs.org/media/soft/highlight/test.html).

`
Inline `code` has `back-ticks around` it.
`

Inline code has back-ticks around it.

Blocks of code are either fenced by lines with three back-ticks <code>```</code>, or are indented with four spaces. I recommend only using the fenced code blocks – they’re easier and only they support syntax highlighting.

`javascript
var s = "JavaScript syntax highlighting";
alert(s);
`

`python
s = "Python syntax highlighting"
print s
`

`
No language indicated, so no syntax highlighting.
But let's throw in a tag.
`

`javascript
var s = "JavaScript syntax highlighting";
alert(s);
`

`python
s = "Python syntax highlighting"
print s
`

`
No language indicated, so no syntax highlighting in Markdown Here (varies on Github).
But let's throw in a tag.
`

Tables

Tables aren’t part of the core Markdown spec, but they are part of GFM and Markdown Here supports them. They are an easy way of adding tables to your email – a task that would otherwise require copy-pasting from another application.

```
Colons can be used to align columns.


Tables        | Are           | Cool  |

————- |:-------------:| —–:|

col 3 is      | right-aligned | $1600 |

col 2 is      | centered      |   $12 |

zebra stripes | are neat      |    $1 |



There must be at least 3 dashes separating each header cell.
The outer pipes (|) are optional, and you don’t need to make the
raw Markdown line up prettily. You can also use inline Markdown.

Markdown | Less | Pretty
— | — | —
Still | renders | nicely
1 | 2 | 3
```

Colons can be used to align columns.

Tables | Are | Cool |

————- |:-------------:| —–:|

col 3 is | right-aligned | $1600 |

col 2 is | centered | $12 |

zebra stripes | are neat | $1 |

There must be at least 3 dashes separating each header cell. The outer pipes (|) are optional, and you don’t need to make the raw Markdown line up prettily. You can also use inline Markdown.

Markdown | Less | Pretty
— | — | —
Still | renders | nicely
1 | 2 | 3

Blockquotes

```
> Blockquotes are very handy in email to emulate reply text.
> This line is part of the same quote.

Quote break.

> This is a very long line that will still be quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.
```

> Blockquotes are very handy in email to emulate reply text.
> This line is part of the same quote.

Quote break.

> This is a very long line that will still be quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.

Inline HTML

You can also use raw HTML in your Markdown, and it’ll mostly work pretty well.

```
<dl>


<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does not work very well. Use HTML <em>tags</em>.</dd>




</dl>
```


	<dl>
	<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does not work very well. Use HTML tags.</dd>

</dl>

Horizontal Rule

```
Three or more…

—

Hyphens

***

Asterisks

___

Underscores
```

Three or more…

—

Hyphens

Asterisks

Underscores

Line Breaks

My basic recommendation for learning how line breaks work is to experiment and discover – hit <Enter> once (i.e., insert one newline), then hit it twice (i.e., insert two newlines), see what happens. You’ll soon learn to get what you want. “Markdown Toggle” is your friend.

Here are some things to try out:

```
Here’s a line for us to start with.

This line is separated from the one above by two newlines, so it will be a separate paragraph.

This line is also a separate paragraph, but…
This line is only separated by a single newline, so it’s a separate line in the same paragraph.
```

Here’s a line for us to start with.

This line is separated from the one above by two newlines, so it will be a separate paragraph.

This line is also begins a separate paragraph, but…
This line is only separated by a single newline, so it’s a separate line in the same paragraph.

(Technical note: Markdown Here uses GFM line breaks, so there’s no need to use MD’s two-space line breaks.)

YouTube Videos

They can’t be added directly but you can add an image with a link to the video like this:

`
<a href="http://www.youtube.com/watch?feature=player_embedded&v=YOUTUBE_VIDEO_ID_HERE
" target="_blank"><img src="http://img.youtube.com/vi/YOUTUBE_VIDEO_ID_HERE/0.jpg"
alt="IMAGE ALT TEXT HERE" width="240" height="180" border="10" />
`

Or, in pure Markdown, but losing the image sizing and border:

`
[![IMAGE ALT TEXT HERE](http://img.youtube.com/vi/YOUTUBE_VIDEO_ID_HERE/0.jpg)](http://www.youtube.com/watch?v=YOUTUBE_VIDEO_ID_HERE)
`

 —
title: A Bootstrap 4 and Jekyll 4 Theme
date: 2020-03-11 12:00:00
description: >-

A Bootstrap 4 and Jekyll 4 Theme

image: /assets/images/test/background-image3.jpg
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
Foo bar.

 —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-

This blog post will give you an overview of how to get started with the jumbo-jekyll-theme

image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {


{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 },  { 0, 33 },





};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {

	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);

}


```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {

fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);

}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)

goto err;

/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)

goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {

mraa_result_print(res);

}

return res;

	err:
	mraa_result_print(res);
return res;


```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

# Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!





            

          

      

      

    

  

    
      
          
            
  —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-


This blog post will give you an overview of how to get started with the jumbo-jekyll-theme




image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
# Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

# GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {

{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 }, { 0, 33 },

};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {



	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);








}





```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {


fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);




}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)


goto err;




/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)


goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {


mraa_result_print(res);




}




return res;



	err:
	mraa_result_print(res);
return res;





```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!

 —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-

This blog post will give you an overview of how to get started with the jumbo-jekyll-theme

image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {


{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 },  { 0, 33 },





};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {

	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);

}


```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {

fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);

}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)

goto err;

/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)

goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {

mraa_result_print(res);

}

return res;

	err:
	mraa_result_print(res);
return res;


```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

# Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!





            

          

      

      

    

  

    
      
          
            
  —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-


This blog post will give you an overview of how to get started with the jumbo-jekyll-theme




image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
# Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

# GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {

{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 }, { 0, 33 },

};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {



	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);








}





```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {


fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);




}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)


goto err;




/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)


goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {


mraa_result_print(res);




}




return res;



	err:
	mraa_result_print(res);
return res;





```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!

 —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-

This blog post will give you an overview of how to get started with the jumbo-jekyll-theme

image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {


{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 },  { 0, 33 },





};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {

	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);

}


```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {

fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);

}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)

goto err;

/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)

goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {

mraa_result_print(res);

}

return res;

	err:
	mraa_result_print(res);
return res;


```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

# Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!





            

          

      

      

    

  

    
      
          
            
  —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-


This blog post will give you an overview of how to get started with the jumbo-jekyll-theme




image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
# Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

# GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {

{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 }, { 0, 33 },

};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {



	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);








}





```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {


fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);




}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)


goto err;




/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)


goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {


mraa_result_print(res);




}




return res;



	err:
	mraa_result_print(res);
return res;





```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!

 —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-

This blog post will give you an overview of how to get started with the jumbo-jekyll-theme

image: /assets/images/test/background-image2.png
author: john.smith
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {


{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 },  { 0, 33 },





};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {

	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);

}


```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {

fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);

}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)

goto err;

/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)

goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {

mraa_result_print(res);

}

return res;

	err:
	mraa_result_print(res);
return res;


```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

# Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!





            

          

      

      

    

  

    
      
          
            
  —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-


This blog post will give you an overview of how to get started with the jumbo-jekyll-theme




image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
# Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

# GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {

{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 }, { 0, 33 },

};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {



	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);








}





```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {


fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);




}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)


goto err;




/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)


goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {


mraa_result_print(res);




}




return res;



	err:
	mraa_result_print(res);
return res;





```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!

 —
title: Getting started with the jumbo-jekyll-theme
date: 2018-11-23 12:00:00
description: >-

This blog post will give you an overview of how to get started with the jumbo-jekyll-theme

image: /assets/images/test/background-image2.png
author: kyle
category: blog
keywords: jekyll, note, theme, jumbo-jekyll-theme
—
Introduction

Welcome to Part - 8 of Our path to libmraa with 96Boards series. In
this part I will provide a quick summary of the new GPIO API added to [MRAA library](https://github.com/intel-iot-devkit/mraa).

GPIO in MRAA

Last month we had a pretty interesting discussion in the Linux GPIO Mailing List
regarding MRAA [Thread](https://lkml.org/lkml/2019/4/18/218). Most of them were
criticism against the way MRAA is doing GPIO access on Chardev capable linux
based systems. I already explained the significance of GPIO Chardev support in
[Previous blog](https://www.96boards.org/blog/path-libmraa-96boards-part-7/).
Kernel developers shared their frustration regarding the MRAA dependent pin
mapping as it is prone to go wrong when an external gpiochip like GPIO expander
got probed before the SoC’s internal gpiochip.

To understand this scenario, let’s consider the below MRAA GPIO pin mapping for
Dragonboard410c:

```c
int db410c_chardev_map[MRAA_96BOARDS_LS_GPIO_COUNT][2] = {


{ 0, 36 }, { 0, 12 }, { 0, 13 }, { 0, 69 }, { 0, 115 }, { 2, 3 },
{ 0, 24 }, { 0, 25 }, { 0, 35 }, { 0, 34 }, { 0, 28 },  { 0, 33 },





};

The above lookup table has the entries of gpiochip and its internal pin
number. This gets mapped to 96Boards specific GPIO numbers on Low speed
expansion header as below in [96Boards platform code](https://github.com/intel-iot-devkit/mraa/blob/master/src/arm/96boards.c):


	```c
	// GPIOs are labelled “GPIO-A” through “GPIO-L”
for (i = 0; i < MRAA_96BOARDS_LS_GPIO_COUNT; i++) {

	mraa_96boards_pininfo(b, 23 + i, ls_gpio_pins ? ls_gpio_pins[i]-1, 1, “GPIO-%c”, ‘A’ + i,
	chardev_map ? (*chardev_map)[i][0] : -1,
chardev_map ? (*chardev_map)[i][1] : -1);

}


```

The above mapping should work ideally on Dragonboard410c in most cases. But
sometimes, when an external gpiochip gets probed before the SoC specific
internal gpiochip, above mapping will go wrong since the gpiochip’s id gets
allocated based on the probing order during system boot. At the same time,
the chip specific internal pin number will always be the same since it is obtained
from platform declaration mechanism like devicetree.

For overcoming this issue, we need a way to access a GPIO without specifying the
gpiochip number. How can we do that? Well, the kernel already provides a nice
feature for accessing a GPIO using its line name and I decided to make use of
that! I went and created a Pull request which adds a new MRAA GPIO init API
which takes the line name and returns the MRAA specific GPIO descriptor. And
the user can then make use of the returned descriptor for doing all GPIO related
access in MRAA as before.

Pull Request: https://github.com/intel-iot-devkit/mraa/pull/965

Below code snippet can be used to access a GPIO with the help of new API:


	```c
	mraa_gpio_context gpio;
mraa_result_t res = MRAA_SUCCESS;

/* initialize mraa for the platform. not needed most of the times */
mraa_init();

/* initialize GPIO-A */
gpio = mraa_gpio_init_by_name(“GPIO-A”);
if (gpio == NULL) {

fprintf(stderr, “Failed to initialize pin %dn”, GPIO_1);

}

/* set GPIO-A to output */
res = mraa_gpio_dir(gpio, MRAA_GPIO_OUT);
if (res != MRAA_SUCCESS)

goto err;

/* write 1 to GPIO-A */
res = mraa_gpio_write(gpio, 1);
if (res != MRAA_SUCCESS)

goto err;

res = mraa_gpio_close(gpio);
if (res != MRAA_SUCCESS) {

mraa_result_print(res);

}

return res;

	err:
	mraa_result_print(res);
return res;


```

Sounds pretty simple, right? But there exists a dependency… Your board specific
platform declaration mechanism like devicetree should declare GPIO line name for
making use of this new API. For most of the 96Boards CE boards, we had added
line names in the mainline kernel and it will work without any issues. For older
devicetree, the user has to manually add line names by taking the reference
from below patch:

https://www.spinics.net/lists/devicetree/msg276218.html

# Conclusion

This concludes the summary of Part - 8 of Our path to libmraa with 96Boards
blog. Since the initial MRAA Pull Request has been merged, I’m planning to add
few examples to MRAA along with bindings for supported languages. Stay tuned!





            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





